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A nonlinear Fokker-Planck equation is derived to describe the cooperative 
behavior of general stochastic systems interacting via mean-field couplings, in 
the limit of an infinite number of such systems. Disordered systems are also con- 
sidered. In the weak-noise limit; a general result yields the possibility of having 
bifurcations from stationary solutions of the nonlinear Fokker Planck equation 
into stable time-dependent solutions. The latter are interpreted as non- 
equilibrium probability distributions (states), and the bifurcations to them as 
nonequilibrium phase transitions, In the thermodynamic limit, results for three 
models are given for illustrative purposes. A model of self-synchronization of 
nonlinear oscillators presents a Hopf bifurcation to a time-periodic probability 
density, which can be analyzed for any value of the noise. The effects of disorder 
are illustrated by a simplified version of the Sompolinsky-Zippelius model of 
spin-glasses. Finally, results for the Fukuyama-Lee-Fisher model of charge-den- 
sity waves are given. A singular perturbation analysis shows that the depinning 
transition is a bifurcation problem modified by the disorder noise due to 
impurities. Far from the bifurcation point, the CDW is either pinned or free, 
obeying (to leading order) the Gr/iner-Zawadowki-Chaikin equation. Near the 
bifurcation, the disorder noise drastically modifies the pattern, giving a 
quenched average of the CDW current which is constant. Critical exponents are 
found to depend on the noise, and they are larger than Fisher's values for the 
two probability distributions considered. 
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1. I N T R O D U C T I O N  

The appearance of order in a macroscopic system through fluctuations and 
interaction of subsystems is a much analyzed phenomenon in statistical 
physics and other sciences. (2 10) Equilibrium phase transitions are among 
the best-understood examples of these spontaneous ordering processes. In 
statistical physics, they are bifurcations between stable stationary 
probability distributions. These distributions may be associated with 
systems of infinitely many coupled stochastic equations. 

For physical systems of finitely many stochastic equations, the H- 
theorem implies that any initial probability distribution evolves toward the 
unique stationary distribution: the equilibrium state. (~ Thus, only in the 
thermodynamic limit can we have equilibrium phase transitions. (23)'2 But 
we can have even more. It is possible to find stable time-dependent 
probability distributions and bifurcations to them from other distributions 
(stationary or not). In other words, in the thermodynamic limit, we can 
find nonequilibrium probability distributions and nonequilibrium phase 
transitions. (4,5 I 

In the literature the term "nonequilibrium phase transition" is 
sometimes used with a different meaning: a change in the number of 
maxima of the (unique) stationary solution of a standard Fokker Planck 
equation (FPE) when some parameter varies (see, e.g., Ref. 6). The coor- 
dinates of these maxima are then identified with the order parameter of the 
phase transition, Although for each value of the control parameter there is 
one and only one stationary solution of the FPE (and thus a unique mean 
value), experimentally one would measure the values of the variable with 
maximum probability. This is not  the meaning I intend in this paper: when 
the probability density bifurcates, there is more than one density that 
solves the nonlinear Fokker-Planck equation (see below). Multiplicity of 
solutions of standard Fokker Planck equations (which are linear in the 
probability density) is impossible. The existence of stable time-dependent 
solutions of the standard Fokker-Planck equation is forbidden by the H- 
theorem (1 / 

In this paper I analyze infinite systems of stochastic equations coupled 
via a mean-field interaction. I derive, quite generally, a nonlinear equation 
for the one-system probability density. Then I demonstrate the existence of 
nonequilibrium probability densities and phase transitions by solving this 
equation for some particular models. 

2 1 will not distinguish in this paper between equilibrium and stationary states. The reason is 
that I do not want to use a baroque terminology such as "nonequilibrium phase transitions 
to stable time-dependent states," even though this is the exact meaning I have in mind. 
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Our starting point is a paper by Desai and Zwanzig./2) They analyzed 
the following equations: 

d x j d t = ( 1 - - x ~ ) x j + F l / 2 w s ( t ) - - J ( x j - - N  1 ~ Xk), j = l  ..... N 
l<~k<~N 

(1.1) 

Here the w;(t ) are independent Gaussian white noises [ ( w s ) = 0 ,  
(wj(t) wk(t')) = 6sk 6(t - t ')]. With J =  0, Eq. (1.1) describes the relaxation 
of a particle in a double-well potential, in contact with a thermal bath at 
temperature F. The last term in (1.1) can be viewed as an interaction 
between particles that creates a tendency for their coordinates xj to relax 
toward the center of mass of the ensemble. Desai and Zwanzig derived the 
following nonlinear Fokker-Planck equation for the one-particle 
probability density: 

0, p(t; x) = �89 ~ p(t; x) - c?x{ [(1 - x 2) x + J ( ( x ( t ) )  - x)] p(t; x)} (l.2a) 

(xCt)) = f xp(t; x) dx (1 .2b) 

f p(t; x) = (1.2c) dx 1 

They used the molecular chaos assumption [p2(t; xl ,  x2) = 
p(t; Xl)p(t; x2)] to close a hierarchy of equations for all the multiparticle 
probability densities. They also gave another derivation that made it clear 
that (1.2) is asymptotically valid in the limit N--, oo. (2) Later, Dawson 
proved this. (3) An analysis of (1.2) showed the existence of a pitchfork 
bifurcation for its stationary solutions, which corresponds to an 
equilibrium phase transition. Furthermore, the approach to equilibrium in 
the thermodynamic limit can be studied from (1.2). ~2'3'19) 

Here I derive nonlinear Fokker Planck equations like (1.2) for more 
general mean-field models (having general nonlinearities, not just the 
double well, and with each xj being an n-dimensional vector). Disordered 
systems with random coefficients in (1.1) also have a reduced equation for 
the one-particle density. I then study the nonlinear Fokke~Planck 
equation in the weak-noise limit. I discover that nonequilibrium densities 
may be expected when the system with F =  J = 0  has a time-dependent 
attractor. The precise form of these results (which are the central results of 
the paper) is given in Section 2. The rest of the paper is organized as 
follows. Section 3 contains results for models of self-synchronizing 
oscillators, spin-glasses, and charge-density waves. They are found by 
analyzing the corresponding nonlinear Fokke~Planck equation and con- 
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firm the existence of nonequilibrium densities and phase transitions. The 
purpose of this section is to illustrate the general results of Section 2. Thus, 
even though some of the models are interesting per se, I do not give a com- 
prehensive analysis or list of results. I do this elsewhere. (4'5) The derivations 
of the results of Section 2 are in Section 4. Section 5 contains a rather 
sketchy derivation of the results of Section 3. Finally, I devote Section 6 to 
a discussion. 

2. THE N O N L I N E A R  F O K K E R - P L A N C K  EQUATION.  GENERAL 
RESULTS 

Let us consider the following system of stochastic (Ito) equations: 

dx/dt = f(x) + F1/2w(t) (2.1) 

Here x(t)=(Xl(t),..., xn(t)),F>O, and w(t) is a Gaussian white noise 
[ - (w( t ) )=0 ,  (w(t)w(t'))=16(t-t'), 1 is the nxn identity matrix]. 
Equation (2.1) describes a dynamical system subject to a stochastic distur- 
bance due to interaction with a bath at temperature F. Consider now a set 
of N systems identical to (2.1) interacting through a mean-field coupling. 
The resulting model is given by the equations 

dxfdt=f(x~)+Fl /2wj( t ) -JIx j -N- ly"  x~l (2.2) 
l < ~ k ~ N  

where j =  l ..... N and J > 0 ,  and noises corresponding to different sub- 
systems are independent. The last term in (2.2) can be viewed as an interac- 
tion between subsystems of type (2.1) that creates a tendency for the sub- 
systems to relax toward the center of mass of the ensemble. 

Particular examples of the form (2.2) have been used in many con- 
texts. Scalar subsystems with f ( x ) =  - x 3 + ~ x ,  the derivative of the ~b 4 
potential, have been used to study critical dynamics, chemical kinetics, 
muscle contraction, etc. (cf. Ref. 3 and references quoted therein). With 
additional time-independent noises, similar models have been proposed to 
describe the dynamics of spin-glasses (v) and the sliding of charge-density 
waves. (8) 

The Fokker-Planek equation for the conditional probability density of 
the Markov process I X ( t ) -  (Xl(t) ..... Xu(t)) } is 

N 

c~, eu(t; X, Y) = �89 3jPx(t; X, Y) 
1 

N 

- Z V j  {[f(xj)+JN ' Z ( x ~ - x ; ) ] P ~ . ( t ; X , Y ) }  (2.3) 
I k 
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Here 

�9 0 2J  "~ "2 o,-  a/at,  j---vj v j - -  a2/ax?j+ . . .  + etc. 

The initial condition is 
N 

PN(0; X, Y) = 6(X - Y) = [ I  6(X/-  Yj) 
1 

The conditional probability is normalized so that S PN(t; X, Y) dX = 1. Let 
the initial data Y be distributed according to the molecular chaos 
assumption 

N 
]~N(Y) = H #(YJ) (2.4) 

1 

At t = 0 the subsystems are uncorrelated, so the probability density of the 
ensemble is the product of the individual densities. 

Hesult 1. The one-system density p(t;x) defined below is, 
asymptotically in the limit N-~ 0% the solution of the following nonlinear 
Fokker Planck equation: 

@(t; x)/0t = �89 x ) - V  { E f ( •  J ( ( x ( t ) )  - x ) ]  p(t; x)} (2.5) 

( x ( t ) )=fxp( t ;x )dx ,  f p ( t ; x ) d x = l  (2.6) 

p(0; x) = #(x) (2.7) 

p(t; x) is defined by 

X1) = f PN(g; X, Y) # u ( g )  dY d x 2 . . . d x  N (2.8) p(t; 

In the same limit, there is propagation of the molecular chaos, i.e., for any 
integer L, 

xl ..... XL)= lim fPN(t;X,Y)#N(Y)dYdxL+I. . .dXN PL(t; 
N ~ c~ 

= p(t; Xl)... p(t; XL) (2.9) 

Suppose now that the function f(x) of Eq. (2.2) depends on random 
vector processes hi, with m components h~ (k = 1,..., m; j = 1 ..... N) for each J 
subsystem j. Then, the original stochastic equation is 

- N  ~ 1 
dxJdt = f(xj; hi) + Fl/2wj(l) -- J xj 2 Xk (2.10) 
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The noises w and h are independent. The h's in different points of space are 
uncorrelated, i.e., the probability distribution of the stochastic process 
{hi, I<~j<~N} is 

N 

dP({hj, 1 ~<j~< N}) = [ I  dP(hj) (2.11) 
1 

Problems such as (2.10) (2.11) are common in physics. They appear, 
for example, in models with random fields and models of charge-density 
waves. In these problems, one is often interested in quenched averages with 
respect to h of thermal averages, usually the mean or the two-point 
correlation of the x j, 

xi(t), xi(t) xj(t') (2.12) 

The overbar means average with respect to the thermal noise first and then 
with respect to h. The xj(t) are the solutions of (2.10) for given realizations 
of the two noises. 

Result 2. Let us suppose the molecular chaos initial condition (2.4) 
for the N-system density. Now the #'s may depend on h. As N ~  o% the 
averages (2.12) are given by 

x,If): I ae(h)I ~ xplt, ,,; h) 

xi(t) xj(t')= 6,..i. f dP(h) f dx dy xyp(t, x, y; h) 
(2.13) 

Here p(t, x; h) is a one-system density, which solves the equation and the 
initial and normalization conditions below: 

~?p(t;x;h)/~3t=�89 

+J(fyp(t, y ; h ) d y d P ( h ) - x ) ]  p(t; x; h)} (2.14) 

p(0, x; h ) =  #(x; h) (2.15) 

I p(t, x; h) dx dP(h )=  1 (2.16) 
d 

p(t, x, y; h) is a conditional one-system density that satisfies (2.14), (2.i6), 
and the initial condition p(0, x, y; h ) =  c~(x- y), instead of (2.15). 
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Furthermore, if we denote by PN(t; xl,..., XN) the N-system density 
averaged with respect to all the h's, the following molecular chaos property 
holds: 

lim ~PN(t;X)dxL+~'''dxN=fi(t;Xj)'' 'I~(t;XL) (2.17) PL(t; xl,..., x L ) -  = 
N ~ o o  g 

Here p(t; x) = S p(t, x; h) alP(h). 
Equation (2.14) corresponds to substituting S dP(h) ~ dx xp(t, x; h) for 

N-lZl_<k,< N X~(t) in (2.10), an intuitive result that has been conjectured 
on several occasions (see, for example, Ref. 8, where this conjecture plays 
an important role in the analysis). For Eq. (1.1) (which does not contain 
the extra noises h), Dawson proved this central limit result. ~3~ 

Result 3. Asymptotically as F-+0 ,  the solution of (2.14) is a 
functional of the mean x(t), where x(t) is the average with respect to h of 
the solution of the reduced equation 

dx(t;h)/dt=f(x(t;h);h)+J[x(t)-x(t;h)],  x(0; h ) =  y(h)(2.18)  

x(t) = ~ x(t; h) dP(h) (2.19) 
d 

The coordinate y(h) in (2.18) is that of the maximum of lnp(0, x; h). The 
precise form ofp(t ,  x; h) will not be written here. The two-time correlation 
(2.13) can be calculated by means of 

x(t) x(t ') = f x(t - t'; y; h) y dy dP(h) (2.20) 

Here I have explicitly displayed the y dependence in the argument of the 
solution of (2.18) (2.19). In the case of Eq. (2.5), we have 
x(t) = x(t; y; h )=  (x ( t ) ) ,  and (2.18) becomes the simpler equation 

d(x( t )  )~dr = f ( ( x ( t ) ) )  (2.21) 

From (2.21) the next result follows immediately: 

Hesult 4. Let the deterministic equation dx/dt=f(x) have an 
asymptotically stable solution x = A ( t ) .  Then, asymptotically as N ~  
and F ~  0, the stochastic system (2.2) has a stable one-system probability 
density that is a time-dependent functional of A(t). 

Result 4 is false for the standard stochastic equation (2.1). The stable 
solution of the Fokker Planck equation associated with (2.1) is a 
stationary probability distribution that assigns equal probability to all 
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points x belonging to A(t), and probability zero to all other points. Thus, 
for the mean-field models we consider, nonequilibrium probability densities 
may exist in the thermodynamic limit only. 

3. APPLICATIONS TO S O M E  SPECIFIC MODELS 

In this section we use the nonlinear Fokker Planck equation to 
analyze three models. 

3.1. Sel f -Synchronizat ion of Nonl inear Oscillators 

Let us consider the following system of Langevin equations: 

dx/(t)/dt= (c~_ x[) x/ + x)! + F'/Zwj(t)_ J[x j ( t )_  N ~ 
I%k<~N 

x/ -  (X/, y/), x'/ =_ ( -  y:, X/) , x:.x~=0 

xk(t)] (3.1a) 

(3,1b) 

Here j =  1 ..... N. For J = F = 0 ,  the stable solution of (3.1a) is x j = 0  if e < 0 ,  
and X/=~l/2[cos(t+fl/), sin(t+/?/)] if a > 0 .  Thus, for c~>0, (3.1) is a 
collection of nonlinear oscillators subject to thermal noise fluctuations and 
coupled via a mean-field interaction. The nonlinear Fokker-Planck 
equation for the one-oscillator density is (2.5) with f (x )=  (c~-x 2) x + x*. 
For this model we have the following results~S~: 

1. The stationary solution of the nonlinear Fokker-Planck equation 
is 

le-~(xl, O(x)=(J-~:+�89 Z = f e  ~x) dx p , ( x ) = Z  (3.2) 

2. The solution (3.2) is stable for o~<JA +J,  where A obeys the 
equation: 

   02 Ef  0exp, } 0 
(3.3) 

3. At ~ = J A  +J, there is a supercritical Hopf bifurcation. For 
c~ > JA + J, the asymptotically stable one-oscillator probability density is 

p ( t , x ) = Z  l exp{ - f~ (x )+  [ ( a / F - J  1)/(~1 _F/j)] l /2  

x (oc - J - - J A )  1/2 (y cos t - - x  sin t) + O(Ic~ - -J - -JAI ) }  (3.4) 
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The mean value of x is zero for e ~< JA + J, and it is time-periodic for 
~ > JA + J: 

( x ( t ) )  = [(a/F- J -  1 ) / ( l e  - -  F/J)] 1/2 

xFJ l(e-J-JA)l/2 ( - s i n  t, cos t)+ O(le-J-JA]) 

Below the bifurcation point, the system of oscillators as a whole is in a 
quiescent state. Above it, the oscillators synchronize and a state of collec- 
tive rhythmicity appears. Similarly, we can choose the noise F as the bifur- 
cation parameter. Notice that the expansion in powers of (e-  J-JA)1/2 is 
in the argument of the exponential in (3.4). This is not mere chance: if we 
try an expansion ofp( t ,  x) such as 

p(t, x) = Z  L exp{ -~b(x)} + (e -J-JA)l/2pl(t, x ) +  ' "  

(linear response theory) in the nonlinear Fokker-Planck equation, the 
periodic solution bifurcates vertically. This is true to all orders in 
( e - J - J A )  ~/2. In physical terms, trying to use nonlinear response theory 
to characterize the bifurcating periodic density fails to all orders. 

The advantage of the system (3.1) is its computational simplicity, even 
though collective rhythmicity is expected for more involved nonlinearities 
f(x) such as van der Pol's nonlinearities. ~9t In the more complicated exam- 
ple of the CDW that follows, only the F--* 0 limit will be considered. 

3.2. A Simple Model of Spin-Glass Dynamics 

The following equation is a (very) simplified version of Sompolinsky 
and Zippelius's model of spin-glass dynamics(7): 

dxj/dt=(1-X~)xj+F1/2w/(t)-(J+O)(x/-N-l ~ xk) , j=I,...,N 
l<~k<~N 

(3.5) 

Here 0 is a zero-mean Gaussian noise of variance o. All other coefficients 
and variables are as in (1.1). The original model (7) had a nearest neighbor 
interaction term with a random coupling J~j instead of the last term in 
(3.5). The J~ were time-independent Gaussian white noises. After averaging 
over the Ja, the remaining sums over nearest neighbors were changed to 
mean-field forms (see Ref. 7 for details). Our version (3.5) is simpler, and it 
is included here for illustrative purposes only. 

For each realization of the noise 0, and asymptotically as N ~  o% we 
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derive the following nonlinear Fokker-Planck equation for the one-particle 
probability density: 

O,p(t;x;O)=�89 2 . Oxp(t, x; O) (3.6a) 

- 0 ~ { [ ( 1 - x 2 ) x + ( J + 0 ) ( ( x ( t ) ) - x ) ] p ( t ; x ; 0 ) }  (3.6b) 

(x(t) ) = f xp(t; x; O) dx 

f p(t; x; 0) dx = 1 (3.6c) 

For each 0, the stable solution of (3.6) is that found by Desai and 
Zwanzig~2): a stationary solution that experiences a pitchfork bifurcation. 
To calculate quenched averages, all we have to do is to average with 
respect to 0 the corresponding moments of the density p(t; x; 0). For con- 
venience, we choose ( J +  0) as our bifurcation parameter. The graph ( x )  
versus ( J +  0) consists of a pitchfork bifurcation for each realization of 0. 
Then the bifurcation diagram, 2 versus J, consists of a pitchfork bifurcation 
smeared by the noise 0. The correlation (x2) 1/2 measures the magnitude of 
this smearing. Far from the mean value of the bifurcation point, 
(x2)1/2~a 1/2. Near the mean bifurcation point, (x2)~/2~ ~/4, and fluc- 
tuations are much more important. In fact, they are of the same order as 
the mean x. This is the picture of the "spin-glass transition" one achieves in 
this model. See Fig. 1 (Section 5). 

3.3. Fisher's Model  of Charge-Densi ty  Waves  ( C D W )  (s~ 

This is a discretized mean-field version of the Fukuyama-Lee model of 
CDW. t~~ It consists of the equations ( j =  1,..., N) 

( N) 
d~#'dl=E-hjs in((~j-[~i)-J  O j - N - - ~ b k  +F~/aw/(t ) (3.7) 

Here ~bj is the slowly varying phase of the CDW at the site j; J is the 
stiffness of the CDW; E is the applied electric field; and hj and/3j represent 
random impurity potential and pinning angle, respectively. Their 
probability distributions factorize as in (2.11). The hJ and/?j are statistically 
independent. Then, asymptotically as N--, 0% the one-phase probability 
density p(t, ~; h, t~) satisfies (2.14) (2.16), which now are 

~?tp(t, ~; h, fl)= �89 p(t, qS; h, ~) 

? o { [ E - h s i n ( ~ - f l ) + J ( ~ ( t ) - ~ ) ] p ( t , ~ ; h ,  fl)} (3.8) 
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~(t) = (2~) - '  f Op(t, ~; h, fl) d~ dfi dP(h )  

p(0, ~; h,/~) = #(~; h,/~) 

(2n) -~ f p(t ,  O; h, fl) dq~ dfl dP(h )  = 1 

(3.9) 

(3.10) 

(3,11) 

From these equations we have to find the quenched average of the CDW 
current, which is d~/dt. This is the experimentally measurable current. 
Asymptotically as F ~ 0 ,  the reduced equations (2.!8)-(2.19) for the 
extremal phase are (in dimensionless form) 

d0(z; h, fi)/dz= G - s i n  O + j [ O ( t ) - O + l ~ - / 3 -  [ /s in 0] 
(3.12) 

0(0; 4, p)  = o- + [~ 

0(z; h,/~) =- ~(t; h,/D - /~  
(3.13) 

r = f , ,  j = J /& G = E//~, H = (/7 - ,~)/J 

We have assumed that 1~ # 0. The overbar now means 

h, fi) (2n) : f~  re; = dfi , dP(H)f(z;/7, fi) (3.14) 
7r 

With this definition f l - - 0 = / t .  We have analyzed (3.12)-(3.14) in the 
strong pinning l i m i t / ~  1, assuming that the correlation of H is at most 
O(1). As argued by Fisher, ~8) the CDW is pinned for small enough fields G 
only when j <  1. Therefore, to consider the strong pinning limit, j ~  1, is not 
unreasonable. Furthermore, it makes life easier. In addition, we require 
that the correlation of the noise h /be  small in comparison with its mean 
value. Our problem is thus to ascertain the effect of the small j t e rm  of 
(3.12) in the single-phase equation. The solution is as follows(4): 

!. Far from the bifurcation point G = I  (how far? ]G-1I>>j ) ,  
0(~; h, fl) differs little [how much? O(j) ]  from the solution of the unpertur- 
bed problem 

dOo(z)/dr=G-sinOo, 0 o ( 0 ) - - a +  fi (3.15) 

(3.15) is the classical single-phase model of Gfiiner, Zawadowki, and 
Chaikin (see Ref. 8). Let us recall the behavior of the solution of this 
equation for G > 0. We consider angles 0o in the interval [ - ~ ,  n] only. It 
is sometimes useful to think of a cylindrical phase space (0o, dOo/&), where 
0o e [ - ~ ,  ~] and angles differing in integer multiples of 2~ are identified. 
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For G < 1, the solution monotonically tends to the constant 01 = sin 1 G, 
0 < 01 ~< ~/2, unless the initial condition 00 coincides with the other con- 
stant solution of (3.15), 02 = ~ - 01. In the cylindrical phase space, (01,0) is 
a stable node, while (02, 0) is a saddle point. As G tends to 1 from below, 
saddle and node approach each other. At G = 1, they coalesce, forming a 
saddle-node at (~/2, 0). A loop formed by two of the separatrices of this 
saddle-node encircles the cylinder. For  G >  1, the constant solutions dis- 
appear and the separatrix loop becomes a stable time-periodic solution that 
is unique modulo a constant phase shift. As (3.15) can be solved by a 
quadrature, we have an exact description of this "creation of a limit cycle 
from the separatrix of a saddle-node." This global bifurcation is the depinn- 
ing of the CDW in the bud. However, if [ G -  1[ ~ j ,  (3.15) is not a good 
approximation to (3.12). 

2. Near the bifurcation point G =  1, a different asymptotic analysis 
has to be performed, considering now [ G -  I t ~ j. The result of this analysis 
to leading order is 

0(r) ~ re/2 + [2A[ 1/2 tan(1 J2A[ 1/2 ~) 

- ~ {2cot  l [ ~ - 1 2 A I  1/2~(2m+1)]  
rrt 0 

+ 2 / [ ~ -  ]2AI ~/2 7c(2m+ t ) ]}  (3.16) 

A - G -  1 - j ( f l  + H) (3.17) 

Here we have chosen an initial condition according to which the 
probability that a phase ~b takes the value fi + ~/2 is maximum. Otherwise 
we would have to shift the origin of time in (3.16). 

3. For IG-11  > j ,  the quenched average of dO/dt is equal to 
dOo/dt + O(j) .  Thus the excess current due to the CDW is zero if G ~ 1 and 
it is periodic if G > 1. For ] G -  1 ] ~ j we must average the time derivative 
of (3.16)-(3.17) with respect to H and fi to find out. Once this is done, we 
find 

dO/dt ~ (G -- GT) c (3.18) 

= 2 if dP(H)  = cS(H) d H  
(3.19) 

~ = 3  if d P ( H ) = l q ( q - H ) t t ( H + q ) d H / q  

Here ~/(x) is the Heaviside step function, equal to one for x > 0 and equal 
to zero for x < 0. The critical exponent ~ depends on the form of the dis- 
tribution of the H's if J and the correlation of the h's are of the same order. 
If any of these parameters is much larger than the other (and both of them 
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are small compared to/~), ~ = 2. If J and the correlation of the h's are of the 
same order, we have ~ = 3 for H's distributed with equal probability on an 
interval I - q ,  q]. More results for this model will be given elsewhere. (4! 

4. DERIVATION OF THE RESULTS OF SECTION 2 

Results 1 and 2 can be derived by adapting a well-known method/71 
First, we insert in (2.8) the path integral representation of the solution of 
(2.3). (11) Manipulation of the resultant multiple path integral and use of the 
saddle-point method yields (2.5)-(2.7), asymptotically as N ~ ~ .  A similar 
derivation yields Result 2. Proofs of these results can be constructed by 
means of Dawson's methodsJ 3~ 

Derivation of Result 3. To solve (2.14)-(2.16) in the low-tem- 
perature limit, we use the WKB method, thereby inserting in (2.14) the 
following function: 

p(t, x; h) = exp{ - ~(t, x; h)/F} [Z0(t, x; h) + FZ~(t, x; h) + O(F2)] (4.1) 

We find an eikonal equation for ~ and linear transport equations for the 
Z's. The eikonal equation is 

~?, ~u+ �89 + If(x; h) + J(Mt) - x ) ] - V W =  0 (4.2) 

~(t) in (4.2) is given by (2.!3) and (4.1). The solution of the initial value 
problem for ~ is attained by the method of characteristics. It is 

~u(t, x; h) = Q(N(t, x); h) + �89 Jo dr exp rJj  

- (  Vf(z(r, s); h) dr V12(s; h) (4.3) 
o 0  

s = X ; ( t , x )  

Here f2(x; h) = ~'(0, x; h), and x(t, s) is the solution of the characteristic 
equation 

d)~(t, s)/dt = fO~(t, s); h) + J [x( / )  - -  Z(I, S)] 

+ e x p I J t l - f o V f ( x ( r , , ) ; h ) d r ) V f 2 ( s ; h  ) (4.4) 

z(O, s) = s (4.5) 

Once Z(t, s) is known, X2(t, x) is its inverse function (if it exists): 

Z(t, Y.(t, x)) = x, X;(t, x(t, s)) = s (4.6) 
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To evaluate i(t),  we use Laplace's method in (2.13). Asymptotically in the 
limit F--, 0, i ( t )  is equal to the average with respect to h of that function 
x = Xo(t; h) that minimizes ~(t, x; h). Thus i ( t )  satisfies 

i ( t )  = f Xo(t; h) dP(h) (4.7) 

Xo(t; h) minimizes ~(t, x; h); therefore 

V~V(t, Xo(t; h); h) = 0 (4.8) 

Assuming that !2(t, x) exists, and considering (4.3), (4.8) is satisfied if 
Vf2[N(t, Xo(t; h)); hi = 0. Suppose that the initial probability density has a 
single maximum at s = y .  Then X:(t, Xo(t ;h))=y,  which gives 
?r y ) =  Xo(t; h). By insertion in (4.4) (4.5), we find 

dxo(t;h)/dt=f(xo(t;h);h)+J[i(t)-Xo(t;h)], xo(O; h) = y (4.9) 

Equations (4.9) and (4.7) are (2.t8) and (2.19), respectively. 
Equation (2.20) follows from Laplace's method applied to (2.13). 

Derivatioo of Result 4. As mentioned in Section 2, this follows 
immediately from Result 3. I end this section by giving a local 
approximation to p(t, x; h), valid near x = x0(t; h). Assume that 

p(t, x; h) ~ exp{ - ] x  - xo(t; h)12/[2FW(t; h; 7)]  

+ O ( t x -  Xo(t; h)13/F)} (4.10) 

By inserting (4.10) in (2.14) and then ignoring O[ ]x -Xo( t ;  h)13/F] terms, 
we find the following equation for W(t; h; 7): 

OrW(t;h;y)+2[J-Vf(xo(t;h);h):7 2] W ( t ; h ; 7 ) = l  (4.11) 

7 is an arbitrary unit vector. [From the derivation, 7 = (X-Xo)/ Ix-Xo[ .  
But x is arbitrary, and so is 7.3 The W(t; h; 7) plays the role of a local 
correlation for (4.10). To solve (4.11), we need an initial or boundary con- 
dition for W. If Xo(t; h) is T-periodic in t, we impose that W also be T- 
periodic in t. For a more general attractor Xo(t; h), the time dependence of 
W(t; h; 7) is determined by that of Xo(t; h). It is expected for the Gaussian 
approximation (4.10) to break down near bifurcation points, since the 
operator J1 - V f  is not invertible there. 
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5. DERIVATION OF THE RESULTS IN SECTION 3 

5.1. Self-Synchronization of Nonlinear Oscillators 

Let us make the substitution p(t, x ) =  e x p [ -  ~(t, x)] in the nonlinear 
Fokker Planck equation corresponding to (3.1). The resulting nonlinear 
equation is 

-a , ,b ( t ,  x ) =  E�89 x) + V .  g(x)] + �89 x)] 2 

+ [-g(x)+ J ( x ( t ) ) ] .  V@(t, x) (5.1) 

g ( X )  = (0{ - -  J -  x 2) x -}- x t ( 5 . 2 )  

The stationary solution (3.2) solves �89 x ) + V .  g(x)=  0. It also solves 
(5.1) with ( x ) =  0. It is a stationary state of type II, according to Jauslin's 
classification scheme {~2) for the FPE. If (x(t))_= 0, any initial condition of 
(5.1) relaxes oscillatorily to (3.2). In general, { x ( t ) ) r  and (3.2) may be 
unstable. The linear stability analysis of (3.2) may be done as in the case of 
the model (1.1)J 23t The result in dimensionless form is given by Eq. (3.3). 
Equation (3.4) is obtained by a standard Hopf bifurcation analysis of 
(5.1)-(5.2). 

5.2. Spin-Glasses 

As mentioned in Section 3, we can use Desai and Zwanzig's results 12j 
for (1.1). The presence of the noise 0 shifts the bifurcation diagram back 
and forth (Fig. 2 of Ref. 2). We expect that the influence of 0 will be most 
noticeable in a close neighborhood of the bifurcation point. To analyze this 
neighborhood, we take J near the bifurcation value in the absense of noise, 
J0. Then we calculate the thermal mean value of x, (x(0)) ,  for 0 small. 
This is reasonable if the variance cr is small, which we assume to be the 
case. The calculation is similar to the derivation of Eq. (15) in Ref. 2. Near 
the bifurcation point, (x(O)) is a random variable given by 

<x(O))=Jo~(3F/2)~/~(J-Jo+O)'/2~l(O)+O(lOI) (5.3) 

q(0) is the Heaviside step function, equal to one if 0 > 0 and equal to zero if 
0 < 0. The expected value with respect to 0 of (5.3) gives us the quenched 
average 2. Recalling that 0 is a zero-mean Gaussian variable, the 
probability distribution of ~x(O)) is, approximately, 

dP((x(O))) = 4 j 2 ( 1 8 ~ F  2) 1/2 (x(O)> 

x e x p ( -  (2a) '{2g-'EJo(x(O))]2+Jo_J}2 ) 

x ~I[ (x(O))] d(x(O)) (5.4) 

We have drawn Fig. 1 from (5.3) and (5.4). Near the bifurcation point Jo, 

822/46/3-4-16 
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Y 
O(cr ~) 

<x(9).> 

�9 ~..~. ~.~. 

3 

Fig. 1. A sketch of the thermal average (x(O)) versus 3, The shaded region is the scatter 
band about the quenched average 2". Its width (proportional to the quenched correlation of 
(x(O))) is largest for J near the bifurcation point. 

the quenched average ,~ and the correlation of (x(O)) are of the same 
order: O(a~/4). This is much larger than the correlation far from the bifur- 
cation point, which is 0(al/2). Far from the bifurcation point, a regular 
perturbation expansion says that (x(O)) is approximately linear in 0. 
Modifications of bifurcation diagrams due to small noises are studied more 
generally by Watson and Reiss./131 

5,3. C D W  

Far from G =  1, a regular perturbation in powers of j suffices. The 
single-phase model (3.15) is then obtained as the leading order term. As 
G-* 1, secular terms (which are unbounded for t--, oo) appear and 
therefore the perturbative scheme breaks down. Let us cat1 the bifurcation 
region that interval of G where j and G - 1 are of the same order. Let e be a 
small parameter that characterizes the deviation of the phase 0 from n/2 
(the unperturbed phase 00 at G = 1). Then the corrections to n/2 in the 
bifurcation region will be 

O('c,e)=~z/2+eOl(s~'c)+O(s2)=-rc/2+eO~(()+O(c 2) (5.5) 
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We have scaled the time anticipating a slower evolution in the bifurcation 
region. 7 will be determined consistently in what follows. In the bifurcation 
region, the parameters j and G -  1 are 

j=g, Pjp+O(gP+I), G=I+ePGp+O(e p+I) (5.6) 

p and 7' are now determined so that in the equation for 01, dO~/d~, jp, Gp, 
and the leading nonlinear term are of the same order in e (they balance 
each other). This distinguished limit corresponds to 7 = 1 and p = 2. The 
equation for 01(_~) is 

dO 1 (()/d~ = G2 - J2(fi + H)  + �89 (~)2 (5.7) 

The solution of (5.7) yields the second term on the right side of (3.16). As 
the tangent blows up when its argument is an odd multiple of n/2, ~0~(() is 
not small compared to zr/2 for neighborhoods of the corresponding times. 
Boundary layers then have to be inserted so that a bounded periodic 0(r; e) 
is obtained. The third term in (3.16) is such a boundary layer correction. 
The remaining term causes (3.16) to be the leading-order uniform 
approximation to 0(r.; e). Similarly, an approximation to 0, uniform in G 
and r, may be constructed from (3.16) and the solution of (3.15)J ~3) 

The situation is now (to leading order) quite similar to that of our 
spin-glass model: we have a bifurcation diagram modified by a small, ran- 
dom imperfection. In this case the bifurcation is more complicated than a 
pitchfork bifurcation. It is the creation of a limit cycle from the separatrix 
loop of a saddle-node. Because of the time dependence, different definitions 
of the order parameter yield different critical exponents above the bifur- 
cation point. For the CDW, the natural order parameter is the quenched 
average of the current dO~dr. By inserting (3.16) in the expression for dO/dr, 
we find (3.18). The details will be given in Ref. 4. Note that the expression 
(3.18) is valid in the long-time limit only, after some transient terms have 
died out. 

6. D I S C U S S I O N  

We have analyzed models of infinitely many identical subsystems 
interacting via a linear mean-field term, subject to thermal fluctuations and 
perhaps containing disorder. The simplicity of the mean-field coupling and 
the presence of the thermal noise make it possible to derive a nonlinear 
Fokker-Planck equation for the one-system probability density. For our 
derivation to work, it is crucial to use the molecular chaos initial con- 
dition (2.4). This situation is very common in derivations of macroscopic 
equations (cf. Boltzmann's), when only classes of initial conditions lead to 
evolutions described by the macroscopic equation. ~14) 

One problem not dwelt upon here is whether N 1 ~ l~k<.N  Xk(/) tends 
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to (x ( t ) )  or to Mt) in the thermodynamic limit. I conjecture that this cen- 
tral limit result is true for all those cases where the limits defining the path 
integrals exist. This is something to be shown for each model, as Dawson 
did for (1.1) in Ref. 3. 

Our derivation can be easily extended to the case of multiplicative 
noise, where some function of xj multiplies the thermal noise in (2.1) and 
successive equations. The only difference would have been a more com- 
plicated diffusivity in the resulting nonlinear FPE. Similarly, a tensorial- 
field coupling J(xj)" ( x k - x j )  instead of J ( x k - x  j) results in an obvious 
modification of the nonlinear FPE. Let the mean-field coupling be non- 
linear: N-1J(xj)Z~g(xk--xj) {g(x) and J(x) are scalar and vector 
functions of x, respectively]. The derivation of Section 4 still works for 
polynomial g's, or for g's that can be factorized so that the dependences in 
x,  and in xj are separated. Examples are g (x )=  exp K.•  sin K . x  ..... The 
consistency conditions are now more complicated than in the linear case: in 
general, higher moments, response functions, and correlations of the x's 
enter the nonlinear FPE. A similar situation was found by Sompolinsky 
and Zippelius (7) in their analysis of the dynamics of spin-glasses. 

The nonlinear Fokker-Planck equation was already derived by Desai 
and Zwanzig in 1978 (2) for the model (1.1). The present derivation, valid 
for more general models, led to the prediction of the existence of stable 
time-dependent probability densities (nonequilibrium densities) and bifur- 
cations to them (nonequilibrium phase transitions). These phenomena 
appear in the thermodynamic limit only, as is also the case with 
equilibrium phase transitions. 

Kuramoto (15/ postulated a nonequilibrium phase transition in relation 
to the appearance of collective rhythmicity in systems of nonlinear 
oscillators (without disorder). His argument rested upon considering the 
mean-field interaction and the thermal noise as small corrections to the 
self-interaction of the oscillators. The effects of the thermodynamic limit 
were conjectured. As it turns out, the method of Section 4 yields an 
equation for the one-oscillator density that is different from Kuramoto's. 
There is still a transition to a synchronized state, although the details are 
quite different from those in Ref. 15. (5) 

Derivation of the nonlinear Fokker Planck equation reduces an 
N (N ~ oo)-body linear problem to a one-body nonlinear problem. In this 
process different noises are treated differently: (t)  thermal or external 
noises, which are time- and space-dependent, contribute to the diffusivity 
of the nonlinear Fokker-Planck equation; (2) parametric noises (disorder), 
which are not time-dependent, become deterministic parameters: Their 
probability distributions enter the definition of the quenched average in the 
nonlinear Fokker-Planck equation. 
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Frequently, the nonlinear Fokker-Planck equation can be analyzed 
directly. If we find a stationary density, a linear stability analysis yields the 
bifurcation points of this density. Then we approximate it near these points 
by using the distance to the bifurcation point as a small parameter. Far 
from the bifurcation points, the Gaussian approximation works. !2'5) This 
approach works for problems with or without disorder noise. Sometimes 
all we can do is to study the weak-noise (i.e., the zero-temperature) limit. 
Then, to leading order in F (the temperature), the behavior of the density 
is given by the solution of a system of ordinary differential equations sub- 
ject to some consistency conditions. This is the case for Fisher's model of 
CDW, which yields Eqs. (3.12)-(3.14). In problems without disorder noise, 
these reduced differential equations are the same as those for a deter- 
ministic uncoupled subsystem, Eq. (2.1) with F = 0 .  In problems with dis- 
order, the reduced equations are more complicated: (2.18)-(2.19). 

If the disorder is weak, we can treat it as a perturbation (cf. Section 3). 
The effect of the disorder will be small for all values of the parameters 
except near bifurcation points, where it has a considerable importance. The 
idea of treating the disorder as a small disturbance also works if we have a 
more detailed description of the density, valid for any value of the tem- 
perature F. (5) 

The CDW model of Section 3 was analyzed by Fisher. (s~ His results 
were based on assuming that the quenched average of the CDW phase is 
linear in the time above the depinning field. Then he expanded the solution 
of (3.12)-(3.14) in powers of v-d~/dt. He explicitly excluded the 
possibility that (3.12) (3.14) had time-periodic solutions. Supposedly, such 
solutions would disappear in the thermodynamic limit. The existence or 
nonexistence of periodic of periodic CDW current in the thermodynamic 
limit has originated some controversy in the literature. ~s'~6'17~ The present 
results show that it is possible [and indeed the case for Eq. (3.7) in the 
strong pinning regime] for the oscillatory current to have persisted after 
the thermodynamic limit. For a different model, Sneddon (16) showed that 
no oscillations persist in the infinite volume limit. A calculation like that of 
Ref. 16 would yield the wrong result when carried out for (3.12)-(3.14) 
(with N--, oo substituting the infinite volume limit). In fact, Sneddon's 
calculation was based on the assumption that the pinning potential h was 
small: an expansion of the CDW phase in powers of h was followed by 
taking the infinite volume limit term by term. For (3.12)-(3.14) no 
oscillations survive this process. This is a spurious result here: Sneddon's is, 
in this case, an expansion about a singular limit of Eqs. (3.12) (3.14). The 
leading order term in an h-expansion of the CDW phase corresponds to the 
limit E ~  oo. Why is this limit singular? For strong applied fields, (3.15) 
approximates well (3.12). When l/E= O, there are no oscillatory solutions 
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of (3.15), whereas for 1 / E r  (no matter how small 1/E is), the solution of 
(3.15) is time periodic. 

Another prediction from these results is that the critical exponents are 
not universal (except if h is deterministic) and that ~ ~> 2 (Sections 3 and 5). 
This latter value seems closer than Fisher's ~ = 3/2 to the experimental ones 
in Ref. 18. More comments and results will be published elsewhere. (4) 

It would be very interesting to find out how to describe non- 
equilibrium densities and phase transitions without the mean-field 
approximation. Unfortunately, this is quite hard. No technique of the same 
power as bifurcation theory exists for short-range interactions. The renor- 
malization-group approach (a natural candidate) seems to be limited to 
equilibrium phase transitions and critical dynamics so far. 
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